On the Aluthge Transform: Continuity Properties and Brown Measure

نویسندگان

  • KEN DYKEMA
  • HANNE SCHULTZ
چکیده

We consider the Alugthe transform T̃ = |T |1/2U |T |1/2 of a Hilbert space operator T , where T = U |T | is the polar decomposition of T . We prove that the map T 7→ T̃ is continuous with respect to the norm topology and with respect to the ∗–SOT topology. For T in a tracial von Neumann algebra, we show that the Brown measure is unchanged by the Aluthge transform. We consider the special case when U implements an automorphism of the von Neumann algebra generated by the positive part |T | of T , and we prove that the iterated Aluthge transform converges to a normal operator whose Brown measure agrees with that of T (and we compute this Brown measure). This proof relies on a theorem (which we prove) that is an analogue of von Neumann’s mean ergodic theorem, but for sums weighted by binomial coefficients.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Brown Measure and Iterates of the Aluthge Transform for Some Operators Arising from Measurable Actions∗

We consider the Aluthge transform T̃ = |T |1/2U |T |1/2 of a Hilbert space operator T , where T = U |T | is the polar decomposition of T . We prove that the map T 7→ T̃ is continuous with respect to the norm topology and with respect to the ∗–SOT topology on bounded sets. We consider the special case in a tracial von Neumann algebra when U implements an automorphism of the von Neumann algebra gen...

متن کامل

Iterated Aluthge Transforms: a Brief Survey

Given an r × r complex matrix T , if T = U |T | is the polar decomposition of T , then the Aluthge transform is defined by ∆ (T ) = |T |U |T |. Let ∆n(T ) denote the n-times iterated Aluthge transform of T , i.e. ∆0(T ) = T and ∆n(T ) = ∆(∆n−1(T )), n ∈ N. In this paper we make a brief survey on the known properties and applications of the Aluthge trasnsorm, particularly the recent proof of the...

متن کامل

Aluthge transforms of 2-variable weighted shifts

We introduce two natural notions of multivariable Aluthge transforms (toral and spherical), and study their basic properties. In the case of 2-variable weighted shifts, we first prove that the toral Aluthge transform does not preserve (joint) hyponormality, in sharp contrast with the 1-variable case. Second, we identify a large class of 2-variable weighted shifts for which hyponormality is pres...

متن کامل

On the Hyponormal Property of Operators

Let $T$ be a bounded linear operator on a Hilbert space $mathscr{H}$. We say that $T$ has the hyponormal property if there exists a function $f$, continuous on an appropriate set so that $f(|T|)geq f(|T^ast|)$. We investigate the properties of such operators considering certain classes of functions on which our definition is constructed. For such a function $f$ we introduce the $f$-Aluthge tran...

متن کامل

A note on $lambda$-Aluthge transforms of operators

Let $A=U|A|$ be the polar decomposition of an operator $A$ on a Hilbert space $mathscr{H}$ and $lambdain(0,1)$. The $lambda$-Aluthge transform of $A$ is defined by $tilde{A}_lambda:=|A|^lambda U|A|^{1-lambda}$. In this paper we show that emph{i}) when $mathscr{N}(|A|)=0$, $A$ is self-adjoint if and only if so is $tilde{A}_lambda$ for some $lambdaneq{1over2}$. Also $A$ is self adjoint if and onl...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006